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Abstract Using a visual search task, we explored how be-
havior is influenced by both visual and semantic information.
We recorded participants’ eye movements as they searched for
a single target number in a search array of single-digit num-
bers (0–9). We examined the probability of fixating the vari-
ous distractors as a function of two key dimensions: the visual
similarity between the target and each distractor, and the
semantic similarity (i.e., the numerical distance) between the
target and each distractor. Visual similarity estimates were
obtained using multidimensional scaling based on the inde-
pendent observer similarity ratings. A linear mixed-effects
model demonstrated that both visual and semantic similarity
influenced the probability that distractors would be fixated.
However, the visual similarity effect was substantially larger
than the semantic similarity effect. We close by discussing the
potential value of using this novel methodological approach
and the implications for both simple and complex visual
search displays.
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During visual search, we attempt to detect a target object in the
environment, such as when looking for our mobile phone on a
cluttered office desk. One of the most important questions
regarding how search is performed pertains to how visual

attention is guided to examine items that resemble the target
(Wolfe, Cave, & Franzel, 1989). Classic models of search
focused on how this guidance process operates on the basis
of the visual features of the stimuli, such as color, shape, and
orientation (for a review, see Wolfe & Horowitz, 2004). More
recently, researchers have shown considerable interest in ex-
ploring the extent to which semantic information might also
guide search behavior. For example, when searching for a
kettle, we tend to be more rapid at detection when it is placed
on a kitchen counter, relative to when it is placed on the floor,
demonstrating that high-level knowledge (e.g., regarding
where kettles are likely to appear) may be able to guide search
(for a review, see Oliva & Torralba, 2007). Accordingly,
models of search have begun to be modified to incorporate
routes by which semantic information can guide search be-
havior (Wolfe, Võ, Evans, & Greene, 2011).

Given the importance of understanding the role of high-
level factors in search guidance, in the present study we
examined the extent to which search is guided by two stimulus
properties: the visual properties and the semantic properties. Is
search guided to distractors that are visually similar to the
target, or to those semantically similar to the target? To inves-
tigate this question, we employed a number search task,
wherein people looked for a target number displayed among
distractors. Semantic similarity was quantified by the numer-
ical distance between the target and distractors. The numeri-
cal information conveyed by the visual stimulus is explicit and
unambiguous semantic information about that item. If a digit
is visually recognized as conveying numerical information, its
semantic meaning has been processed. Numerical digits there-
fore provide a controllable stimulus space in which to manip-
ulate semantic similarity and, as such, serve as an ideal stim-
ulus set to explore the contributions of semantic similarity
versus visual similarity in guiding search. In a recent study,
Schwarz and Eiselt (2012) asked participants to search for the
number 5 while controlling the other digits present in the
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displays. They found that when the distractor digits were
numerically close to the target, reaction times (RTs) were
increased as compared to when the digits were numerically
distant, suggesting that search is guided to distractors that are
semantically similar to the target to a greater degree than to
those that are semantically dissimilar to the target. Schwarz
and Eiselt (2012) also conducted an additional experiment in
which participants searched for the letter S (which is highly
similar in appearance to the 5 but semantically unrelated).
They found that presenting participants with displays contain-
ing distractor digits that were numerically close to the number
5 failed to slow search for an S , suggesting that visual simi-
larity could not explain their results.

However, an outstanding question remains: What is the
relationship between semantic guidance and guidance by vi-
sual properties? Given the overwhelming evidence showing
that the visual characteristics of an object influence search
(Wolfe & Horowitz, 2004), it is important to understand the
interplay of visual and semantic features during search. In the
present study, we went beyond Schwarz and Eiselt’s (2012)
work in two key ways. First, each digit (0 to 9) was employed
as a target, to eliminate the possibility that the previous find-
ings were the result of a peculiarity of the stimuli. Second,
rather than attempt to equate the visual similarity of targets, we
used multidimensional scaling (MDS) to obtain a psycholog-
ically tractable metric of the visual similarity among the
numbers. Our approach enabled us to directly compare and
contrast the relative influences of visual and semantic infor-
mation in this task. In short, we sought to map out a more
general picture of how both visual and semantic similarity
influence search behavior.

We recorded the eye movements of participants as they
searched for a single target digit among distractor digits (0 to 9
inclusive, excluding the target). Eye movements have been
used in examining guidance processes in search in a number
of prior studies. Specifically, participants tend to fixate objects
that are visually similar to the target for a range of stimulus
types (Becker, 2011; Luria & Strauss, 1975; Rayner & Fisher,
1987; Stroud, Menneer, Cave, & Donnelly, 2012; Williams,
1967), such as fixating blue and near-blue objects when
searching for a blue target. In the present study, as we noted
above, visual similarity was quantified using MDS, which is a
tool for obtaining quantitative estimates of the similarity
among groups of items (see Hout, Papesh, & Goldinger,
2012, for a review). MDS comprises a set of statistical tech-
niques that take item-to-item similarity ratings and use data-
reduction procedures to minimize the complexity of the sim-
ilarity matrix. This permits a visual representation of the
underlying relational structures that governed the similarity
ratings. The output forms a similarity “map,”within which the
similarity between each pair of items was quantified. The
appeal of this approach is that MDS is agnostic with respect
to the underlying psychological structure that participants

have used to give their similarity ratings. For instance, when
rating the visual similarity of numbers, people might appreci-
ate the roundness or straightness of the lines, or the extent to
which the numbers create open versus closed spaces. Even
with no a priori hypotheses regarding the identity or weighting
(e.g., perhaps “roundness” is more important than “open vs.
closed spaces”) of these featural dimensions, MDS has the
ability to reveal any underlying structure in the output map.
That is, by examining the spatial output, the analyst can intuit
(and quantify) the dimensions by which participants provided
their similarity estimates. By contrast, computational (i.e.,
nonpsychological) methods for measuring similarity may
quantify this construct through a pixel-by-pixel analysis, or in
some other fashion, that does not necessarily capture the way
in which the human visual system assesses visual similarity.

In the present study, the MDS output for digits 0 to 9 was
used to quantify the distance between each item pair in visual
similarity space. Our prediction was that the probability of
fixating a distractor would increase with its visual similarity
to the target. Numerical distance between targets and distractors
was used to quantify the semantic similarity. We also predicted
that the probability of fixating distractors would increase with
semantic similarity to the target. In addition, a key question was
the relative strengths of guidance from these two sources of
information. To address this question, we examined fixation
probability data using a linear mixed-effects model.

Method

Participants

A group of 21 participants from the University of Southamp-
ton completed the MDS rating prestudy procedure. A separate
group of 30 participants (25 females, five males) from the
University of Southampton took part in the main eyetracking
visual search study (mean age = 20.8 years, SD = 3.5).

Apparatus

We recorded eye movement behavior using an Eyelink 1000
running at 1000 Hz. Viewing was binocular, though only the
right eye was recorded. We used a nine-point calibration that
was accepted if the mean error was less than 0.5º of visual
angle, with no error exceeding 1º of visual angle. Drift cor-
rections were performed before each trial, and calibrations
repeated when necessary. We used the recommended default
settings to define fixations and saccades: Saccades were de-
tected using a velocity threshold 30º per second or an accel-
eration that exceeded 8000º per second-squared.

Stimuli were presented on a 21-in. ViewSonic P227f CRT
monitor with a 100-Hz refresh rate and a 1,024 × 768 pixel
resolution. Participants sat 71 cm from the computer display,
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and their head position was stabilized using a chinrest. Re-
sponses (“target present” or “target absent”) were made using
a gamepad response box.

Stimuli

The stimuli consisted of the digits 0 to 9 written using a
standard Verdana font (as used by Schwarz & Eiselt, 2012).
They were 0.8º × 1.2º of visual angle in size. On each trial, 12
stimuli were selected at random, placed upon a virtual 5 × 4
grid, and “jittered” by a random distance in a random direction
within their respective grid cells. Across all trials, the stimulus
selection process was controlled so that each participant was
presented with the same number of instances of each distractor.

MDS task procedure

Via a single trial of the spatial arrangement method of MDS
(Goldstone, 1994; Hout, Goldinger, & Ferguson, 2013), par-
ticipants were shown the digits 0 through 9, arranged in
discrete rows, but with random item placement. Participants
were instructed to drag and drop the images in order to
organize the space, such that images that were closer in space
denoted greater similarity.

Visual search task design and procedure

For the visual search task, the targets were the digits from 0 to 9,
inclusive, which resulted in ten different targets in total. Each
participant searched for the same target digit throughout all of
their 288 trials, which were preceded by 20 practice trials.
Equal numbers of participants searched for each of the ten
different targets (i.e., three participants searched for each tar-
get). A single target was presented on 50 % of the trials. Trials
began with a drift correction procedure, after which participants
were presented with a reminder of the target at the center of the
display, which they had to fixate for 500ms in order for the trial
to begin. Following an incorrect response, a tone sounded.

Results

MDS results

The MDS data were analyzed using the PROXSCAL scaling
algorithm (Busing, Commandeur, Heiser, Bandilla, &
Faulbaum, 1997), with 100 random starts. In order to choose
the most appropriate number of dimensions, a scree plot was
created, which displays stress (ameasure of the fit between the
estimated distances in space and the input proximity matrices)
as a function of dimensionality (see Fig. 1). A useful heuristic
is to find the “elbow” in the plot: the stress value at which
added dimensions cease to substantively improve fit

(Jaworska & Chupetlovska-Anastasova, 2009). Our data
show a clear elbow at Dimension 2; therefore, our MDS
solution was plotted in two dimensions.

Figure 2 shows the results of the MDS analysis (also, in the
supplementary materials, Table S1 provides the two-
dimensional coordinates for each item, and Table S2 reports
the distances in MDS space between each pair of items). No
basic unit of measurement is present in MDS, so the interitem
distance values are arbitrary and only meaningful relative to
other item pairings from the space. One potential criticism of
obtaining visual similaritymeasures viaMDS is that observers
may be unable to ignore semantic information. However, we
found no significant correlation between visual and semantic
similarity measures for the digits (r = −.06, p = .35), suggest-
ing that semantic information did not influence the visual
similarity ratings.

Behavioral analyses

Consistent with the simplicity of the task, response accuracy,
measured as the proportions of correct responses, was high
(target-present trials: M = .96, SD = .04; target-absent trials:
M = .99, SD = .01). The target-absent median RTs (correct
trials) were significantly longer than the target-present RTs
[M = 1,265 ms, SD = 375, and M = 783 ms, SD = 159,
respectively; t (29) = 10.9, p < .0001], which is to be
expected in visual search tasks (Chun & Wolfe, 1996).

Examining the influences of visual similarity versus semantic
similarity

In order to compare the influences of visual similarity to the
target and semantic similarity to the target in determining the
probability that objects would be fixated, we constructed a
linear mixed-effects model (LME: Bates, Maechler, & Bolker,
2012). We adopted this approach because LMEs allow for
variation in effects based on random factors (here, variation
between different participants, different targets, and different
distractors), and, more importantly, because LMEs are versa-
tile when faced with examining data sets in which unequal
numbers of observations are entered into different cells within
the analyses, as was the case here.

We began with a basic LME model that lacked the main
effects of either visual or semantic similarity. As a dependent
variable, we coded whether each distractor was fixated. Since
this was a binary variable (i.e., “fixated” vs. “not fixated”), we
used a binomial model to analyze the data. Prior to the
analysis, we removed the fixation data from incorrect-
response trials, as well as any fixations that were shorter than
60 ms or longer than 1,200 ms in duration (~4 % of fixations
were removed). After removals, the remaining data set com-
prised data from approximately 94,000 distractors regarding
whether they were or were not fixated.
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The random factors entered into the model were the par-
ticipants, the different targets that the participants searched for,
and the different distractors. The first fixed factor was Target
Presence (i.e., target present or absent). The experimental
factors of Visual Similarity to the Target and Semantic Simi-
larity to the Target were added to this basic LME model in an
iterative fashion, to determine the factors that improved the fit
of the model to the data set. Visual similarity to the target was
defined as the reverse coding of theMDS distance to the target
(i.e., maximumMDS distance – the current MDS distance). In
other words, increasing values on the visual similarity scale

meant that the distractors were increasingly similar to the
target. Semantic similarity to the target was defined as the
reverse coding of the numerical distance to the target (i.e.,
maximum numerical distance – the current numerical dis-
tance). This meant that increasing values on the Semantic
Similarity scale indicated that distractors were increasingly
similar to the target.

The final model reported in Table 1 is the model with the
most optimal fit, and Fig. 3 presents the factors that reached
significance in this final model. The p values were generated
on the basis of posterior distributions for the model parameters
obtained by Markov-chain Monte Carlo sampling.

The final LME model showed a number of interesting
results. First, we found clear differences in the probabilities
of fixating distractors in target-present versus target-absent
trials, as evidenced by a significant effect of target presence.
This result is not surprising: As we noted above, target-absent
trials typically have longer RTs than target-present trials do
(Chun & Wolfe, 1996), so, as a direct consequence, the
probability that any object will be fixated is increased in
target-absent versus target-present trials.

Second, we found a significant influence of visual similar-
ity to the target upon the probability of fixating distractors
during search; see Fig. 3. This finding is in line with current
models of search that emphasize the important role that
distractor-to-target visual similarity plays in determining
whether or not an object will be fixated (Becker, 2011; Luria
& Strauss, 1975; Stroud et al., 2012). The tendency for de-
creased RTs in target-present trials was also reflected by the
emergence of an interaction between visual similarity to the
target and target presence. This interaction was caused by a
reduction in the slope for visual similarity in target-present
relative to target-absent trials (slope for target-present visual
similarity to target = 0.39, SE = 0.04, z = 9.34, p < .0001;
slope for target-absent visual similarity to target = 0.47, SE =
0.03, z = 8.08, p < .0001).

Finally, we found a significant effect of semantic similarity
to the target that influenced the probability that objects would
be fixated during search; see Fig. 3. This finding supports the
study conducted by Schwarz and Eiselt (2012) and extends
their result to the full range of digits from 0 to 9 inclusive, and
also demonstrates that the effect of semantic similarity can
modulate eye movement behavior directly.1

1 There is some debate as to the mental representation of numerical
values—for example, as to whether the subjective distance between
adjacent numbers follows a linear or a logarithmic function (see, e.g.,
Cohen & Blanc-Goldhammer, 2012). A logarithmic function would
cause, for example, the semantic difference between 1 and 2 to be greater
than that between 8 and 9. However, in the present data, the values used in
the regression were averaged over all pairs of numbers a certain distance
apart (i.e., the distance of 1 includes the data for 1 vs. 2 as well as the data
for 8 vs. 9). Combining data over these number pairs for every distance
value causes any subjective disparity between small and large numbers to
be averaged out.

Fig. 2 Two-dimensional multidimensional scaling solution for the digit
stimuli. The x- and y-axes represent the primary and secondary dimen-
sions, respectively

Fig. 1 Scree plot for the multidimensional scaling (MDS) data, showing
stress plotted as a function of the dimensionality in which the MDS data
were scaled
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Discussion

Classic models of visual search focused on how the visual
features of the targets and distractors in a search task

influenced behavior and search performance (Wolfe &
Horowitz, 2004). Recently, research has shifted toward exam-
ining the role that semantic information plays in visual search,
particularly in the context of scene perception and real-world
tasks (Wolfe et al., 2011). As a result of these advances, a
growing argument has supported models of search that
include a route by which semantic information can guide
attention. Numerical digits provide a stimulus domain
that is controllable and quantifiable in terms of semantic
similarity, and therefore they are an ideal testing ground
for exploring the influence of semantic information upon
search behavior. Using visual search for numbers,
Schwarz and Eiselt (2012) found that when participants
searched for the number 5, their RTs were increased
when the average numerical distance between the
distractors and the target was reduced. This result sug-
gests that participants were spending extra time examin-
ing these distractors because they were semantically sim-
ilar to the target.

Table 1 Fixed-effect estimates and results of statistical tests for the
mixed linear model, including the slope, the standard error of the slope,
and the z value

Effect Model
Coefficients

SEM z

Intercept −1.62 0.14 −11.52**

Target Presence −0.93 0.04 −23.38**

Visual Similarity to the Target 0.48 0.03 16.79**

Semantic Similarity to the Target 0.05 0.01 11.00**

Target Presence × Visual Similarity
to Target

−0.14 0.05 −3.05*

* p < .01, ** p < .0001

Fig. 3 Proportions of distractor objects fixated as a function of the visual
similarity (upper row) and semantic similarity (lower row) to the target
object, for both target-present (left column) and target-absent (right
column) trials. For visual similarity, increases along the x-axis represent
increased similarity between each object and the target. Each point on the
graphs for visual similarity represents a single visual similarity value
between a pair of digits. Given that we used ten different digits (0–9),

there are (10 * 9)/2 = 45 similarity values in total. For semantic similarity,
increases along the x-axis likewise represent increased similarity between
each object and the target. Each point on the graph represents a single
semantic similarity value between a pair of digits. Given that numerical
distance is standardized between pairs, data were collapsed across differ-
ent pairs for a given similarity value (e.g., nine pairs had the maximum
similarity of 9)
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Here, we extended Schwarz and Eiselt’s (2012) study as
follows. First, we wanted to ensure that semantic information
can guide search to other digits, aside from the number 5. This
is important in terms of both replicating their results and
establishing the fact that semantic information guides search
more generally. To address this issue, we asked participants to
search for a range of digits, not just the number 5. Second,
given the evidence in favor of how visual features can guide
search behavior, we also wanted to know the extent to which
the visual similarity between digits may also influence search.
This was an important novel development, because it enabled
us to compare and contrast the roles of guidance by visual
versus semantic information.

Participants were asked to search for the digits from 0 to 9,
inclusive. The key dependent variable was the probability of
fixating each distractor. If visual similarity guides search,
participants should have been highly likely to fixate
distractors that were visually similar to the target. Further-
more, if semantic information guides search, they should have
been highly likely to fixate distractors that were a small
numerical distance from the target (i.e., that were numerically
or semantically similar to the target). Our analyses revealed
that, in fact, both of these factors guided behavior, though the
magnitudes of the two factors were quite different. This was
evidenced by the difference in slopes for the two factors in the
LMEs. The slope provides an indication of the extent to which
the probability of fixating distractors varied with the indepen-
dent variable. For visual similarity, the slope was approxi-
mately nine times larger than that for semantic similarity
(0.48, as compared with 0.05).

Although searching for a number may be more “abstract”
than searching real-world scenes, numbers do provide an
environment in which semantic relationships can be con-
trolled in an unambiguous fashion. The present research and
the results obtained address important questions for visual
search regarding guidance from semantic information. We
have demonstrated under tightly controlled conditions (and
using a novel combination ofmethodologies) that it is possible
to define and contrast the contributions of visual versus se-
mantic information in guiding search behavior. From this
controlled environment, the results can be used to inform
future investigation of more complex, scene-based tasks, in
which multiple forms of high-level information converge to
modulate search behavior (e.g., Wolfe et al., 2011). Indeed,
there is growing evidence that, when searching real-world
scenes, semantic information may play a much stronger role
in guiding fixations than it did in the present study (see, e.g.,
Henderson, Malcolm, & Schandl, 2009). Our findings there-
fore add to this growing literature by mapping out the contri-
butions of semantic and visual information when simple,
controlled stimuli are utilized.

Finally, it should be noted that the present study serves as a
proof of concept for a novel methodological approach:

namely, the use of MDS-derived similarity indexes in con-
junction with eyetracking (see also Alexander & Zelinsky,
2011). It is worth noting that our MDS space is very much
like one that was derived for numbers by Shepard, Kilpatric,
and Cunningham (1975) nearly 40 years ago, evidencing a
stable mental representation for these stimuli, despite differ-
ences in the raters and methods of data collection (a compar-
ison of the spaces is provided in the supplemental materials).
Adopting our approach will likely benefit researchers wishing
to study the role of semantic information in more complex
visual search displays, as well as provide them with a stable
and reliable metric to quantify visual similarity between more
complex objects. Furthermore, this approach can not only help
to quantify visual similarity, but also help to provide predic-
tions regarding eye movement behavior during visual search.
Future studies along these lines may also benefit from specif-
ically controlling the visual similarity of objects—for exam-
ple, by using different fonts and sizes.
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