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Abstract Visual search is one of the most widely studied
topics in vision science, both as an independent topic of inter-
est, and as a tool for studying attention and visual cognition. A
wide literature exists that seeks to understand how people find
things under varying conditions of difficulty and complexity,
and in situations ranging from the mundane (e.g., looking for
one’s keys) to those with significant societal importance (e.g.,
baggage or medical screening). A primary determinant of the
ease and probability of success during search are the similarity
relationships that exist in the search environment, such as the
similarity between the background and the target, or the like-
ness of the non-targets to one another. A sense of similarity is
often intuitive, but it is seldom quantified directly. This pre-
sents a problem in that similarity relationships are imprecisely
specified, limiting the capacity of the researcher to examine
adequately their influence. In this article, we present a novel
approach to overcoming this problem that combines multi-
dimensional scaling (MDS) analyses with behavioral and
eye-tracking measurements. We propose a method whereby
MDS can be repurposed to successfully quantify the similarity
of experimental stimuli, thereby opening up theoretical ques-
tions in visual search and attention that cannot currently be
addressed. These quantifications, in conjunction with behav-
ioral and oculomotor measures, allow for critical observations
about how similarity affects performance, information selec-
tion, and information processing. We provide a demonstration

and tutorial of the approach, identify documented examples of
its use, discuss how complementary computer vision methods
could also be adopted, and close with a discussion of potential
avenues for future application of this technique.

Keywords Methods .Similarity .Multi-dimensionalscaling .

Visual search . Eye-movements

During a typical visual search task, people are asked to detect
a target embedded within a set of non-target (distractor) items.
Visual search has been extensively studied as an independent
topic of interest (Chan & Hayward, 2013; Palmer, Verghese,
& Pavel, 2000; Wolfe, 1994, 1998, 2010), and remains one of
the most widely-used methodologies for studying attention
and visual cognition (Davis & Palmer, 2004; Evans et al.,
2011; Treisman & Gormican, 1988; Wolfe & Horowitz,
2004). An enormous literature exists that seeks to understand
how people find things, ranging from low-level shape search
(e.g., finding rotated Ts among rotated Ls; Chun & Jiang,
1999; Dowd &Mitroff, 2013), to high-level scene perception,
such as finding your favorite cereal on the shelves of a
cluttered grocery store, or a familiar face in a crowd of people
(Henderson, 2003; Henderson & Hollingworth, 1999;
Hollingworth, Williams, & Henderson, 2001). Search is
sometimes mundane, as when people perform laboratory tasks
or look for their keys at home. But many searches are per-
formed by professionals, with significant societal importance,
such as the screenings performed by radiologists or airport
security agents (Biggs & Mitroff, 2014; Godwin et al.,
2010a, 2010b; Helbren et al., 2014; Menneer et al., 2009,
2012; Wolfe et al., 2007).

A crucial determinant of the ease and likelihood of success
during search is the similarity between the background and the
target that a person is trying to find (Duncan & Humphreys,
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1989). A bird-watcher, for example, will easily spot a cardinal
(a bright red bird) on a lifeless tree in the dead of winter, but
would have a much harder time spotting a brown thrasher on
the same tree, as it will blend into the similar colors of its
surroundings. Although this notion is widely appreciated,
and although a sense of Bsimilarity^ might seem intuitive, it
is seldom quantified directly. The problem for modern re-
searchers is that visual similarity is an important but hard-to-
quantify concept. For some stimulus characteristics (e.g., col-
or, orientation), it is reasonably straightforward to quantify or
manipulate similarity—for instance, by precisely varying the
orientation of two stimuli—and doing so can foster insights
into behavior. However, with more complex stimuli (e.g., real-
world objects), the direct measurement and manipulation of
features is not universally straightforward, and so quantifica-
tion often relies on the consensus view of the researchers as to
what constitutes a similarity dichotomy (similar vs.
dissimilar).

In this article, we present a novel approach to overcoming
this problem that combines multidimensional scaling (MDS)
with behavioral measurements and eye-tracking. MDS is a
statistical technique that—when applied to overt or indirect
similarity judgments—can be used to uncover the dimensions
by which people perceive similarity. Its application is wide-
spread (Hout, Goldinger, & Ferguson, 2013, for a discussion),
but in the psychological literature, it is most often used when
researchers want to explore or confirm the features that make
two things appear alike or different. We propose thatMDS can
be repurposed to quantify similarity successfully for many
types of stimuli, and thereby open up theoretical questions in
visual search and attention that cannot currently be addressed.
More specifically, by conducting an MDS analysis on the
stimuli that will be used in a visual search task, researchers
can objectively quantify – in a continuous, rather than dichot-
omous fashion—the extent to which stimuli are (or are not)
perceived as resembling one another. These quantifications
can then be used in conjunction with simple accuracy or reac-
tion time measures, as well as more temporally and spatially
fine-grained eye-tracking metrics (e.g., fixation duration,
scan-path ratio) to make critical observations about how sim-
ilarity affects performance, information selection and informa-
tion processing, and thereby provide novel insights into visual
search. This technique is particularly useful when the stimuli
of interest are complex, or high-dimensional, and therefore
may be comprised of features that are unspecified or unknown
a priori. Here, we provide a brief demonstration of this ap-
proach, identify documented examples of its application and
previous successes, discuss the potential for computer vision
methods to complement the use of MDS, and close with a
brief discussion of potential avenues for the future use of this
approach. Taken together, we will show that MDS enables not
only careful stimulus control, but also facilitates the discovery
of new insights into visual cognition.

Visual search and similarity

We have known for decades that similarity—the degree to
which two objects resemble one another—plays a key role
in modulating visual search behavior. Search is easy when
the target is completely unlike all the distractors (so-called
Bpop-out^ or Bfeature search^), and gets more difficult when
the distractors share similarity with the target (so-called
Bconjunction search^; Treisman & Gelade, 1980). For exam-
ple, in Fig. 1, the top panels represent easy searches because
the targets are unique; there is only one blue item in the top-
left panel, and only one sofa in the top-right. By contrast, the
bottom panels demonstrate comparatively more difficult
searches wherein the target is now similar to the distractors
in some way; in the bottom-left panel, many Ls share the color
of the target, and on the bottom-right panel, all the distractors
share an identity with the target, and must therefore be more
closely scrutinized during search.

Accordingly, similarity is an important concept appreciated
by several major theories of visual search. In Treisman’s
Feature Integration Theory (FIT; Treisman & Gelade,
1980), the difference between these efficient (feature) and in-
efficient (conjunction) searches is explained by the number of
features shared by the target and distractors; i.e., how similar
the target is to other items.Wolfe’sGuided Searchmodel (GS;
Wolfe, Cave, & Franzel, 1989; Wolfe, 2001) extends upon
FIT, by suggesting that focal attention (which is required dur-
ing inefficient search) is judiciously guided. In GS, guidance
is achieved via a master map of attentional allocation, and the
prioritization of attention is determined in a top-down fashion.
More specifically, attention is influenced by the similarity be-
tween features in the scene and the mental representation of
what is being searched for (see also Zelinsky, 2008; Hout &
Goldinger, 2015). Attentional Engagement Theory (AET; also
referred to as Bsimilarity theory^; Duncan & Humphreys,
1989) also relies strongly on the concept of similarity. AET
posits that representations of objects in a scene compete with
one another for entrance into visual short-term memory, and
that this competition is biased in favor of objects that are
similar to the target (see also Hwang, Higgins, & Pomplun,
2009). In both GS and AET, search is slower when targets are
more similar to the distractors (because resources are wasted
on the examination of non-targets), or when the distractors are
less similar to one another. The AET (Duncan & Humphreys,
1989, 1992) is perhaps the theory that most explicitly relies on
a concept of similarity, but empirical evidence abounds that
similarity has an important role in multiple aspects of search
behavior, such as guidance (the ability to direct attention to the
location of the target) and object identification (the ability to
appreciate that an inspected item is the sought-after target).

For example, Neider and Zelinsky (2006) investigated search
behavior under conditions of target-background similarity. They
asked participants to search for pictures of real-world objects in
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displays that camouflaged the targets. Specifically, backgrounds
were created by taking a square region from the center of the
target image and tiling the display with that visual information.
Neider and Zelinsky (2006) tracked participants’ eye-move-
ments, and found that increasing the target-background similar-
ity slowed search and increased error rates, while eye movement
analyses showed that fixations tended to more often fall on
discrete distractor items than on target-similar regions of the
background. These data suggest that guidance processes are
hindered by the similarity of the target to the background, but
that pattern segmentation abilities leave saccadic targeting rela-
tively unaffected. By contrast, Becker (2011) investigated the
factors that determine how long the eyes remain fixed on
distractors during search, asking if dwell times reflect target-
distractor similarity or perceptual discriminability of the target-
defining feature within the target. Her participants looked for
Landolt Cs of varying line widths while having their eye move-
ments recorded. If perceptual discriminability of the gap itself
was the primary determinant of fixation duration, then the line-
width of the distractors should have affected how long theywere
looked at (i.e., thin Landolt Cs should have elicited longer dwell
times because their gap was harder to perceive), irrespective of
whether or not they matched the line-width of the target.
However, Becker (2011) found that distractors matching the
line-width of the target were fixated longer, across all conditions
of target-line width. This suggested that perceptual discrimina-
bility of the gap was not the predominant factor in determining
fixation durations, but rather that target-distractor similarity
reflected the time needed to reject an item as a non-target.

Moving beyond data from human observers, converging
evidence for the importance of similarity in visual search
comes both from simpler and from more complex systems;
namely, from animal behavior and from computational ap-
proaches (e.g., priority maps derived via computational
modeling). For example, Blough (1988) trained pigeons to
peck at a unique target presented among identical distractors;
the similarity between the target and distractor forms was
quantified using multidimensional scaling (we elaborate on
this technique below). The data took the form of an exponen-
tial relationship between the pigeon’s ability to detect a target,
and that target’s similarity to the distractors that surrounded it,
such that increased target-distractor similarity resulted in
slower target pecking behavior. In addition, Avraham,
Yeshurun, and Lindenbaum (2008) predicted human search
performance from distractor homogeneity and target-
distractor similarity using computational modeling.

Turning to computational and quantitative approaches, pri-
ority maps—mechanisms by which attentional allocation is
prioritized over space (Zelinsky & Bisley, 2015)—have been
constructed for comparison to (and the prediction of) human
search behavior. Broadly, these take two forms: Bottom-up
approaches that determine the perceptually salient feature con-
trasts that are present in a scene (so-called saliency maps;
Borji, Sihite, & Itti, 2013; Koch & Ullman, 1985), and top-
down, goal-driven approaches that quantify the extent to
which areas of a scene match the observer’s to-be-located
target (so-called target maps; Rutishauser & Koch, 2007;
Zelinsky, 2012). The output of both saliency and target maps

Fig. 1 Example visual search
tasks. Top panels display easy
searches for unique targets
defined by color (left) or identity
(right). Bottom panels show
harder searches for targets that are
more similar to the distractors
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are conceptually alike, in that they quantify the similarity re-
lationships in the scene, and use that information to predict
behavior. In the case of saliency maps, this output often esti-
mates the similarity of one location in a scene, relative to the
local scene context (where Blocal^ is a spatially defined pa-
rameter). In the case of target maps, the output often quantifies
the similarity between one location in a scene and the
searcher’s information regarding the target. For instance,
Zelinsky’s Target Acquisition Model (TAM; Zelinsky, 2008)
relies on visual similarity to drive its behavior. Specifically,
TAM computes the similarity between the search target and
visual information in the search display (using image process-
ing techniques that represent scenes in a biologically plausible
way) to determine where the model Blooks.^ Similarity can be
computed with respect to a particular target exemplar
(Zelinsky, 2008) or in reference to a target category
(Zelinsky, Adeli, Peng, & Samaras, 2013). TAM has been
shown to successfully capture the eye-movement behavior
of human observers across a range of manipulations (e.g.,
differences in target-distractor similarity) and ranges of com-
plexity (e.g., simple alphabetic letter search, complex real-
world scenes).

Recently, the concept of similarity has also guided theoriz-
ing about representations in visual working memory during
search. Often, we must find several items (e.g., collecting
one’s keys, wallet, and bag before departing from home),
and we tend to do so by looking for all the items at once, rather
than by performing a series of consecutive, single-target
searches (Hout & Goldinger, 2010, 2012; Menneer et al.,
2012). When people look for multiple targets, the similarity
among those items can affect search guidance, for example, by
restricting attention to features that the targets have in com-
mon. Stroud,Menneer, Cave, and Donnelly (2012) had people
look for two rotated Ts among rotated Ls, and they systemat-
ically varied the similarity in color of the two potential targets,
by manipulating how far apart they were located in color
space (Luria & Strauss, 1975). They calculated the probability
with which participants fixated each distractor color, and used
it as a measure of search guidance and color selectivity. They
found a greater cost in guidance as targets became less similar
to each other (Menneer et al., 2009, 2010; Stroud et al., 2011).
Furthermore, it has been shown that the similarity of a
searcher’s mental representation to the exact appearance of
the to-be-located target affects both the time taken to direct
attention to the location of the target, as well as the time nec-
essary to recognize it (Hout & Goldinger, 2015; Schmidt &
Zelinsky, 2009).

Quantifying similarity using MDS

Despite the widespread acknowledgment in the literature that
visual similarity affects search behavior, it has been

surprisingly difficult to rigorously define how similar different
stimuli are to one another. In experimental psychology, it has
been noted that manipulating or measuring the similarity of
stimulus items can be a challenging task (Hout et al., 2013;
Hout, Papesh, & Goldinger, 2012, for reviews). One approach
is to employ simplistic stimuli and vary a single feature di-
mension of each item, such as the color or orientation of a
rectangular bar (Treisman, 1991). This approach provides rig-
orous control and can be useful for basic theoretical research,
but often researchers wish to examine, control, or manipulate
similarity with more complex stimuli, for increased ecological
validity and generalization to real-world applications. Real-
world objects are usually complex and comprise many fea-
tures in multiple feature dimensions, which makes similarity
among objects difficult to define, measure, and manipulate. A
unique approach was taken by Alexander and Zelinsky
(2011); they collected visual similarity rankings for two target
categories. Participants were shown pictures of five objects at
a time (e.g., lamppost, table, medicine tablet) and were asked
to rank order the objects according to their similarity to the
category Bteddy bears^ or the category Bbutterflies^ (compar-
isons were made to one category at a time, and pictures of
bears and butterflies were not shown). These rankings were
later used to create visual search displays that contained
distractors with Blow,^ Bmedium,^ or Bhigh^ similarity to
the selected target category.

Alexander and Zelinsky (2011) made an important step
forward by attempting to quantify the similarity relationships
among their stimuli. However, the rating system only provid-
ed the ordinal ranked similarity of a selected image relative to
four others and likely would be less useful when employed
with a large number of stimuli or when more precise, graded
measurements of similarity are required (although it should be
noted that they were able to predict these behavioral similarity
ratings using computer vision techniques; we elaborate more
on this study below). With this in mind, we propose a sophis-
ticated approach to quantifying the similarity of both artificial
and real-world objects by applying a multidimensional scaling
analysis to experimental stimuli. MDS is clearly not a new
technique (Shepard, 1980; Torgerson, 1958), but we suggest
it could be usedmore broadly in vision science, adding greater
precision to inferences drawn from experimental data. Its util-
ity, at present, seems to have been largely overlooked by vi-
sion scientists.

MDS is a statistical tool that can be used to measure em-
pirically psychological similarity (Hout, Papesh, &Goldinger,
2012; Shepard 1962a, 1962b). That is, MDS directly quan-
tifies the extent to which someone (or a group of people)
perceive items to be like (or unlike) one another. This stands
in contrast to a computational approach that might, for in-
stance, attempt to quantify the similarity between the physical
(e.g., pixel) characteristics among a set of images. As input,
MDS procedures take raw similarity estimates that are
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provided for a selected set of items. These similarity estimates
can be obtained in direct fashion (e.g., by asking people to
indicate the level of similarity for each pair of items using a
Likert scale) or in an indirect manner (e.g., by examining the
time taken to determine that two items are not identical;
Jaworska & Chupetlovska-Anastasova, 2009). These data
are then subjected to data reduction procedures that are con-
ceptually similar to principal components analysis and explor-
atory factor analysis (Shiffman, Reynolds, & Takane, 1981)
to minimize the complexity of the ratings matrix.

The output from the MDS process is a similarity Bmap^
that quantifies the perceived relationships among the stimuli.
During the analysis, algorithms (of which there are a variety)
move each item in the space (in an iterative fashion) to a
location relative to the other items that, as best as possible,
respects the raw similarity ratings provided by the partici-
pants. MDS is inherently spatial; thus, items that were rated
as being highly similar to one another should be close to one
another in the final output. To the degree that any two items
were rated as dissimilar, the distance between them should
grow. These Bdistances^ are measured in k-dimensional
Euclidean space; hereafter, for simplicity, we simply refer to
them as Bdistances^ in MDS space. Conceptually, this is much
like Newton’s Bcolor wheel,^ which located like colors (e.g.,
orange and yellow) close to one another on the wheel, and
unlike colors relatively more distant from one another (e.g.,
orange and purple; Newton, 1704). Model fit, or the degree to
which the output space conflicts with the raw ratings, is
reflected in a measure known as stress. When the algorithms
have completed their iterations (optimization criteria vary, and
usually rely on changes in stress), dimensional coordinates are
provided for each item that can be used to create a visual
representation of the outcome, as well as to quantify similarity
as the distances between each pair of items in the space.

The dimensionality of the analysis is under control of the
researcher, and there are various techniques for determining
the appropriate complexity of the space (Kruskal & Wish,
1978; Lee, 2001; Oh, 2011). Often, the output is sufficiently
simple to permit a visual representation of the underlying re-
lational structures and factors that impacted the initial similar-
ity ratings. When analysis is purely exploratory, simpler, low-
dimensional solutions may in fact be preferred, because they
permit visual inspection, but when visualization is unimpor-
tant, higher dimensionality spaces can be of use. Interpretation
of the solution is subjective: Researchers examine the organi-
zation of the space and attempt to make inferences regarding
the factors that influenced the similarity ratings, or attempt to
verify a priori hypotheses regarding the underlying structure.
To provide an example, Godwin, Menneer, & Hout (2014)
conducted an MDS analysis on the numbers 0-9. The MDS
analysis revealed a simple, two-dimensional space, the orga-
nization of which suggested that people appreciated the
roundness and straightness of the lines (e.g., 0 was more

similar to 6 than it was to 1), and the extent to which the
numbers created open vs. closed spaces (e.g., 0 was more
similar to 9 than it was to 3). This resulting MDS space was
highly similar to one derived by Shepard, Kilpatric, and
Cunningham (1975), demonstrating that, despite variations
in fonts, stimulus size, and presentation methods, the under-
lying similarity space generated was consistent over several
decades. This suggests that MDS taps into an underlying per-
ceptual appreciation of similarity. It is important to emphasize,
however, that the stimuli being rated need not be so basic, nor
does the outcome of the analysis need to be composed of so
few featural dimensions in order for a space to be of use to
vision researchers.

For example, consider again the top-right panel of Fig. 1.
An attention researcher may wish to know the extent to which
a person searching for a blue couch is distracted by the pres-
ence of things that share the target’s color (e.g., the blue
bowtie), relative to those that share categorical similarity
(e.g., other furniture, such as the chair). Here, the similarity
of the stimulus set in question is likely to be governed bymore
complex relationships, such as color, shape, texture, and so
on. One of the most appealing aspects of using MDS is that it
is agnostic with respect to the underlying psychological struc-
ture that influenced participants’ ratings. A priori hypotheses
regarding how similarity estimates were given are not neces-
sary. By examining the spatial output, the analyst can intuit
and quantify the dimensions underlying people’s ratings, but
again, this process is not necessary for quantifying similarity
between items. Even if an MDS solution is founded on six or
seven underlying dimensions, which would be far too com-
plex to visualize or experimentally control, the computational
algorithm will provide psychological distance estimates that
should (theoretically) predict search behavior.

It should also be noted that there are other theoretical ac-
counts of similarity that are non-spatial in nature. For instance,
feature-based accounts of similarity (Tversky, 1977) assume
that the basic representational units of similarity are not con-
tinuous (as MDS techniques assume), but rather, are binary
(i.e., they represent the presence or absence of a feature).
Although feature-based statistical techniques like additive
clustering (Shepard & Arabie, 1979; Shepard, 1980) have
some mathematical advantages over spatial models such as
MDS (e.g., by accounting for potential violations of the
Btriangle inequality assumption^; Tversky&Gati, 1982), they
are disadvantageous in some circumstances because the ana-
lyst must be able to make predictions regarding the features of
which their stimuli are comprised. This is particularly prob-
lematic when the stimuli are real-world objects (like couches
and chairs), which are likely to be comprised of many simul-
taneous and non-equivalent features (e.g., color is likely a
more salient feature than texture). Unlike featural approaches,
however, spatial techniques (like MDS) do not require the
analyst to know ahead of time what features will be
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appreciated by their participants, which features are more or
less salient, and so on.

To be clear, MDS is not a panacea, and is not necessarily
preferable in every circumstance in which one may wish to
quantify similarity. Although the subjective nature of MDS
may be advantageous when exploring or establishing featural
dimensions that might exist for given stimuli, this subjective
judgment can become problematic in the context of extremely
complex stimuli, wherein the distinctions between feature di-
mensions may be harder to distinguish and therefore outputs
are less reliable. While non-spatial models often require firm
predictions about relevant dimensions, MDS can allow a more
exploratory approach. However, such exploration does not
alleviate the responsibility of firm predictions whenMDS data
are used to underpin hypotheses for future testing. MDS is a
particularly useful tool for quantifying similarity, but re-
searchers may require other approaches for their specific ma-
terials or procedures.

Returning to Fig. 1, by looking at the computed distances
from an MDS analysis (i.e., the Euclidean distance in k-di-
mensional space between each pair of points), an analyst
may conclude that the blue couch is more similar to the blue
bowtie than it is to the chair, or that the table and bookshelf are
perceived to be approximately as similar to each other as are
the sofa and the chair. The units of distance provided by an
MDS output are arbitrary (and vary across scaling algorithms),
but what is universally important are the relative distances
between pairs of objects (e.g., the couch-to-bowtie distance
relative to the couch-to-chair distance). These simple compu-
tations of Euclidean distances thus allow the researcher to
empirically quantify the similarity of items in a stimulus set.

Outline of the approach

Broadly, our suggested approach can be accomplished in three
simple steps: 1) Collect similarity ratings for all the stimuli to
be used in the visual search experiment; 2) Apply MDS anal-
ysis to the similarity ratings; 3) Use the output to quantify the
relationships among items for stimulus selection and/or con-
trol, and then examine search data as a function of the MDS-
derived similarity. To provide a concrete demonstration, we
later briefly review the applications of this approach in
Godwin, Hout, and Menneer (2014), and Hout and
Goldinger (2015).

The first step is to collect all the stimuli that are to be used
in the visual search experiment, and have participants provide
similarity ratings for the items. Ordinarily, this step is com-
pleted using some form of direct ratings procedure, whereby
the participants knowingly rate or classify the items. In the
simplest case, participants may be shown two items at a time
and indicate for each pair how similar they are to one another,
using a Likert scale or a slide bar (Faye et al., 2004;

Rosenberg, Nelson, & Vivekananthan, 1968). Alternatively,
participants may categorize the items according to some
criteria, or sort the items into piles based on their relatedness
(Borg & Groenen, 1997).

There are many data collection techniques that can be used,
the suitability of which may vary according to the character-
istics of the stimuli (Jaworska & Chupetlovska-Anastasova,
2009, for discussion). Recently, spatial techniques have been
advanced (Goldstone, 1994b; Hout, Goldinger, & Ferguson,
2013; Kriegeskorte & Marieke, 2012) that offer an intuitive
interface for collecting ratings, and simultaneously cut down
on the time needed to rate all the items. By contrast, indirect
methods may be used that capture a measure of similarity
using secondary empirical measurements (i.e., stimulus
confusability; Shepard, 1963). Generally, this process in-
volves the use of a perceptual discrimination task, whereby
participants briefly see pairs of stimuli and indicate whether
they are the same or different. The rating data that are collect-
ed from these tasks are either the speed of accurate responses
(Papesh & Goldinger, 2010), or the likelihoods that items
within pairs will be mistaken for one another (Gilmore,
Hersh, Caramazza, & Griffin, 1979). The logic is that if two
items are very similar (e.g., pictures of a Basset Hound and a
Blood Hound), they will be hard to differentiate, and therefore
discrimination reaction times (RTs) will be long, and mistakes
will be likely. When two items are dissimilar (e.g., pictures of
a Basset Hound and a Chihuahua), discriminating between
them will be easier, and RTs will be shorter and mistakes less
likely.

In conducting this step of our approach, it is important that
all of the stimuli to be used in the search task are included.
Similarity is dynamic, and subject to variation when the back-
drop for comparison is changed (Goldstone, Medin, &
Gentner, 1991; Goldstone, Medin, & Halberstadt, 1997;
Spencer-Smith & Goldstone, 1997). Therefore, adding stimuli
to the search experiment after the similarity ratings and anal-
ysis have been completed can potentially alter the conclusions
made regarding the relationships among the items, and subse-
quently their effect on search behavior.

For instance, imagine similarity ratings are collected for an
assortment of dog breeds. For simplicity, imagine there are
only four dogs in which you are interested: A Basset Hound,
a Beagle, a Chihuahua, and a Great Dane (Fig. 2). The Basset
and the Beagle are likely to be close to one another in the
MDS output, considering their similarity in appearance, and
the pair of them are likely to fall somewhere in between the
Chihuahua and the Great Dane, considering their medium-size
stature. Now imagine that you are to consider a Blood Hound
as well. The similarity in appearance between Basset and
Blood Hounds is striking, but the Blood Hound approaches
the Dane in size. Thus, both the Basset and the Great Dane are
likely to be drawn towards the Blood Hound, warping the
similarity space by making, for instance, the Basset now seem
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slightly less like the Beagle than it was formerly. This caution-
ary note is not meant to suggest that similarity is too variable
to be of utility. Quite the contrary is true, as perceptions of
similarity have been shown to be very consistent over time
when overall context remains constant (Godwin, Hout, &
Menneer, 2014; Shepard, Kilpatric, & Cunningham, 1975).
What we intend is simply to make clear the importance of,
during the similarity ratings phase, considering all possible
stimuli that are to be used in the later tasks.

In the second step of this approach, the similarity ratings
are analyzed using MDS. A full and step-by-step guide is
beyond the scope of the current article, but many resources
are available for learning this statistical technique, including a
tutorial by Hout, Papesh and Goldinger (2012; Kruskal &
Wish, 1978; Giguere, 2006). To conduct the analysis, the sim-
ilarity estimates must be gathered into a similarity matrix. This
is a collection of similarity estimates between each pair of
items in the set, whereby the rating for each pair is placed at
the intersection of the appropriate row and column of the
matrix. The data can then be analyzed in statistical software
packages (e.g., SPSS, Matlab, or the open-source software,
R), using one of several instantiations of scaling algorithms,
such as PROXSCAL (Busing, et al., 1997) or ALSCAL
(Young, Takane, & Lewyckyj, 1978). Choosing the right an-
alytic model to analyze the data is an important step, because
one must take into account both the manner in which the
similarity estimates were obtained, as well as the analytic

goals of the research team. The different models vary in the
geometry they use to map the data, the algorithms used to
maximize model fit, the ability to handle single vs. multiple
similarity matrices, and so on. One must also take care to use
metric scaling algorithms when similarity ratings are quanti-
tative (i.e., interval or ratio level, such as perceptual discrim-
ination RTs) and non-metric algorithms when similarity rat-
ings are qualitative (i.e., ordinal level, such as Likert scale
ratings).

Most germane to this approach is selection of an aggregate
or individual differences approach to scaling. Typically, data
are collected frommultiple participants, and an aggregate sim-
ilarity matrix is created, from which a single similarity map is
produced. This method is useful when a researcher wants to
quantify similarity according to average perceptions, much the
same as when multiple participants contribute RT data to an
experiment from which a single mean is acquired. However, it
should be noted that our suggested approach is not limited to
collective perceptions of similarity. There are options avail-
able, should the researcher wish to take into account between-
participant differences. One scaling algorithm, called
INDSCAL (Carroll & Chang, 1970), exists specifically for this
purpose. INDSCAL will accommodate matrices from multi-
ple participants, and in addition to the standard aggregate
group plot, it will provide a secondary output that indexes
the degree to which each participant agrees with the collective.
An alternative to using INDSCAL would be simply to

Fig. 2 Schematic MDS outputs
for dog stimuli. In the top panel,
the Beagle and Basset are
indicated to be highly similar,
relative to the other pairs of dogs.
In the bottom panel, the change of
context brought about by the
addition of the Blood Hound
draws the Basset away from the
Beagle, due to its similarity in
appearance to the new breed
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conduct MDS analyses for the data from each individual par-
ticipant, and use those data to examine participant-level per-
formance during search as a function of personalized similar-
ity ratings.

The third and final step of our approach is to examine the
MDS output and prepare it for use in conjunction with behav-
ioral and oculomotor observations. A key fact to remember is
that MDS spaces portray information only about the
relationships among the items, rather than about specific prop-
erties or absolute values. The direction of the dimensions, for
instance, is unimportant. For example, in Fig. 2, one might
infer that a dimension of Bsize^ is present in the output, as
small dogs are located on the left, medium-sized dogs in the
middle, and large dogs on the right. If the orientation of the
dogs were to be flipped, landing small on the right and large
on the left, interpretation of the space would be unchanged, as
the locations of the dogs would still convey information about
their relative size, and the Euclidean distances would be un-
affected. More importantly, it is crucial to keep in mind that
the units provided by an MDS analysis are arbitrary. The
Basset and the Beagle may be located 3 units away from
one another, for instance, but those units are uninterpretable
until the other distances between items are taken into consid-
eration. By comparing the 3-unit Basset-Beagle distance to the
20-unit distance between the Basset and the Chihuahua, how-
ever, we are able to conclude that the first pair are more similar
to one another by a specific order of magnitude.

How the researcher chooses to use these similarity values
will be determined by the goals of the research question; that
is, by the manner in which similarity is being explored or
manipulated during search. There are various ways these sim-
ilarity values can be used, depending on whether the research-
er wishes to use them in an active (manipulative) or passive
(exploratory) manner. By active, we mean controlling the
makeup of the search task through the selection of images
with pre-specified similarity relationships (e.g., the degree of
similarity between the target and the distractors, or among the
distractors themselves). By contrast, passive use of the simi-
larity data would involve simply observing how the similarity
relationships among items affect behavior. These methods are
not mutually exclusive, of course, and could easily be
employed simultaneously.

For example, imagine conducting a simple visual search
experiment using letters of the alphabet as stimuli. One could
easily collect similarity ratings for the letters A-Z, and analyze
them using MDS. An active approach might involve creating
stimulus displays with distractors that are highly visually sim-
ilar to the target (e.g., search for the letter M among Ns and
Ws) or displays that are highly visually dissimilar to it (e.g.,
search for the letterM amongDs andUs), and then examining
RT as a function of the similarity characteristics of the
distractors. The makeup of these displays would therefore be
empirically derived – with substantially more precision than

an ordinal ranking system (e.g., as employed in Alexander and
Zelinsky, 2011)—through the selection of letters with
predetermined likeness to the target (e.g., by selecting
distractor letters that have a minimum or maximum level of
similarity to the target, or by choosing only the two most
similar letters). In a passive approach, by contrast, one might
display all the letters of the alphabet as distractors, and track
the eye movements of participants. Empirical measurements
here might include the probability that a given letter was fix-
ated (or for how long) as a function of its similarity to the
target. In the next section, we provide more tangible demon-
strations of these tactics, as documented in two recent articles.

Documented examples of usage

Recently, we have used this MDS approach to further under-
stand the role that semantic information plays in attentional
guidance during search. When searching for things in the real-
world, our attention is drawn to locations in which we are
likely to spot our target (e.g., to countertops and tables if we
are looking for a beer mug in a tavern), and to objects that are
conceptually related to it (e.g., to a martini glass; Oliva &
Torralba, 2007), suggesting that high-level knowledge is in-
corporated into the guidance of attention in a scene. There has
been growing interest in understanding the role of semantics
of late (Henderson, Malcolm, & Schandl 2009; Wolfe, Võ,
Evans, & Greene, 2011), partly because until recently, it was
believed that there was either zero or a very limited role for
semantics in guiding search (Wolfe & Horowitz, 2004,
review).

In Godwin, Hout, and Menneer (2014), we used MDS in
combination with eye-tracking to tease apart the effects of
visual and semantic similarity during search for numbers.
Participants searched displays for a single-digit number, indi-
cating the presence or absence of the target in each trial. We
chose to use numbers as a starting point for investigating se-
mantic influences on guidance because numbers represent a
highly controllable stimulus space in which semantic similar-
ity is inherent. Numerical meaning is extracted quickly from
visual displays (Corbett, Oriet, & Rensink, 2006). Indeed,
Schwarz and Eiselt (2012) found that the presence of numer-
ically similar distractors (e.g., 4, 6) decreased speed and accu-
racy in search for the number 5 compared with dissimilar
distractors (e.g., 1, 9), suggesting that attention was drawn to
digits that were numerically close to the target value. They did
not find this pattern of results when participants searched for
the letter S, even though it is highly visually similar to the digit
5, suggesting that the visual characteristics of the numbers
were unlikely to be driving their semantic effects.

Godwin, Hout, and Menneer (2014) built upon the study
by Schwarz and Eiselt (2012) by quantifying visual similarity
using MDS ratings of the digits, and by tracking the
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oculomotor behavior of our participants. One group of partic-
ipants provided visual similarity ratings for the numbers 0-9;
we then analyzed the data using MDS, and indexed visual
similarity via the distance between each pair of numbers in
MDS space. Semantic similarity (as in the Schwarz and Eiselt,
2012, study) was indexed by the numerical distance between
the numbers. One potential concern with indexing visual sim-
ilarity usingMDSmeasures is that – despite our instructions to
rate the stimuli purely based on their visual characteristics – it
is possible that the semantic (numerical) similarity of the num-
bers also affected the ratings provided by our participants. To
address this concern, we correlated the visual similarities (i.e.,
the MDS distances between each pair of numbers) with their
corresponding numerical similarities, and found no hint of a
correlation (r = −0.06). This suggests that our participants
provided ratings that reflected solely the visual similarity
among the numbers (or at least that they sufficiently mini-
mized the influence of numerical similarity when providing
their ratings).

Our next step was to examine participants’ visual search
performance as a function of both visual and numerical simi-
larity (these participants were different from those that had
provided the similarity ratings). We reasoned that if semantic
information influences guidance during number search, then
(when statistically controlling for visual similarity) we should
see an elevated probability that participants will fixate
numerically-similar distractors. However, we expected that
the effects of semantic relatedness would be dwarfed by those
of visual similarity. We used a linear mixed-effects model to
analyze fixation probability, so that we could examine the
effects of semantic relatedness while also accounting for the
visual similarity between target-distractor pairs. Our results
were in keeping with our hypotheses: Both factors guided
attention, but visual similarity had an effect that was nine
times greater in magnitude than that of semantic relatedness.
By applying the approach outlined in this article, we were
therefore able to directly quantify the role that both visual
and semantic similarity play in visual search for numbers.

Subsequently, we have applied this approach to the study
of representations in visual working memory (VWM) during
search, using it to predict eye movement behavior as a func-
tion of the accuracy of target templates (Hout & Goldinger,
2015). A target template is a mental representation of the thing
(or things) a person is trying to locate. They are used to both
guide attention, and to verify (or reject) incoming visual in-
formation asmatching the target (Rao et al., 2002;Wolfe et al.,
2004; Zelinsky, 2008). In laboratory search experiments, par-
ticipants can often form a near-perfect target template, because
they are typically shown, prior to search, a veridical represen-
tation of the target as it will appear in the search display.
However, in the real world, targets are less well defined be-
cause specific details often are hard to predict (e.g., you are
looking for a pepper, but do not know what kind), because

things often change appearance relative to the last time they
were encountered (e.g., when picking your friend up from the
airport, you may be surprised to find he shaved his beard), and
so on (Zelinsky et al., 2013a).

Using the approach outlined in this article, we examined
the extent to which template accuracy impacts attentional
guidance and decision-making during search. Inferring the
accuracy in a mental representation is problematic for obvious
reasons, so in Hout and Goldinger (2015), we chose instead to
manipulate template accuracy in two ways: 1) By introducing
inaccurate features aimed at contaminating the searcher’s tem-
plate, and 2) by adding extraneous features to the template that
were unhelpful during search. We began by collecting simi-
larity data for 240 different real-world object categories, and
thereafter conducting an MDS analysis on each category (the
pictures are available for free download from the Massive
Memory Database, cvcl.mit.edu/MM/stimuli.html, and the
MDS data are available as documented in Hout, Goldinger,
and Brady, 2014). Our first group of experiments involved a
search task wherein, in most trials, the template cue displayed
the target exactly as it would appear in the search display
(instructions told participants to BPlease search for this item
or something very much like it^). In a minority of trials, the
eventual target deviated from the appearance of the cue in
someway (but was always from the same unambiguous object
category). To promote varying degrees of template accuracy,
we sampled systematically from our MDS spaces. More spe-
cifically, we used the distance in MDS space, between the
target cue and the actual target (that appeared in the display),
as a proxy for template accuracy.

In the second group of experiments, we manipulated the
Bwidth^ of the template feature space by having people look
for two targets simultaneously, only one of which could ap-
pear in the display (unaltered, relative to its cue). Either object
in the search template could be the target, so participants had
to prepare to find either in the search display. We varied the
distance in MDS space between these potential targets,
predicting that, to the extent that these images were dissimilar,
template accuracy would be reduced (Stroud et al., 2012). In
both experiments, we found converging evidence for a dual-
function theory of target templates. Specifically, we found that
degraded template accuracy slowed the speed of accurate
search (indexed by RT data), attributable to hindered atten-
tional guidance and decision-making processes (indicated by
scan-path ratios and decision-times, respectively).

Contrasting MDS with computational approaches
for quantifying similarity

One possible reason that our proposed technique has not al-
ready been more widely adopted may have to do with the
appeal of computer vision approaches that quantify similarity
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on a physical basis (e.g., pixel comparisons), and thereby
sidestep the need to collect similarity ratings from human
participants. If automated (computationally derived) similarity
estimates can predict human behavior on par with similarity
derived from human ratings (e.g., MDS), then there is an
incentive for researchers to adopt this powerful, and potential-
ly less laborious approach. This is a nontrivial point; as will be
discussed in the BGeneral Discussion^, one potential draw-
back to using human similarity ratings is that they are time-
consuming to acquire. Recently, some work has been dedicat-
ed to examining new techniques that speed data collection
(Hout, Goldinger, & Ferguson, 2013; Kriegeskorte &
Marieke, 2012), but even so, collecting human similarity rat-
ings on as many as a few hundred stimuli may be prohibitively
time-consuming. By contrast, automated computational
methods could theoretically produce estimates for millions
of stimuli, or more. That being said, computer models do
not typically agree universally with human raters, so it also
can be informative to examine the situations in which ratings
are out of alignment, and use that to inform future theorizing
and modelling. Indeed, some work has already begun to com-
bine and contrast behavior as predicted by human ratings and
computer vision approaches.

A particularly good example of this is the Alexander and
Zelinsky (2011) study discussed (briefly) earlier. This study
exemplifies the idea that human ratings and computational
methods can complement each other, and can be used to
inform theories of search. In their first experiment,
Alexander and Zelinsky (2011) had participants provide sim-
ilarity ratings for 500 objects, indicating how similar each
picture was to a cued target category (teddy bears or butter-
flies). These ratings were then used to classify the objects:
Images that consistently received the lowest or highest simi-
larity ratings were designated to the Blow^ and Bhigh^ simi-
larity categories, respectively, and the images in between were
labelled Bmedium.^ The authors found that these ratings later
successfully predicted search behavior.

Search participants (Experiment 2) were asked to look for
categorically defined targets (e.g., Blook for a teddy bear^).
There were three different types of trials that varied in how
similar the distractors were to the target category (as classified
via the ratings in Experiment 1): Low-similarity and high-
similarity trials, wherein all the distractors had roughly equiv-
alent similarity to the target, and mixed-trials, wherein two
distractors were selected to have low, medium, and high sim-
ilarity to the target, each. Across experiments, analyses were
focused on target-absent trials, in order to focus exclusively on
how the similarity of the distractors affected performance.
Participants were faster to respond in the low-similarity trials,
followed by mixed trials and high-similarity trials, and the
eye-movement analysis revealed that initial fixation probabil-
ities reflected target-distractor similarity (i.e., in the mixed
condition, the first fixation in a trial was most likely to be

directed at a high-similarity distractor, followed by medium-
and low-similarity distractors).

In subsequent experiments, Alexander and Zelinsky (2011)
derived similarity ratings from computer vision techniques.
When human raters appreciate and rate stimuli, it is difficult
to know whether or not semantic associations have contami-
nated the ratings, even if the instructions asked people to con-
sider solely the visual characteristics of the pictures (Medin,
Goldstone, & Gentner, 1993). By using computer vision to
derive the ratings, however, Alexander and Zelinsky (2011)
removed the potentially confounding influence of semantics,
ensuring that the ratings reflected purely the visual features of
the stimuli. The method they employed (described in more
detail in Zhang, Samaras, & Zelinsky, 2008; and Zhang, Yu,
Zelinsky, and Samaras, 2005) works by allowing multiple
visual features (e.g., color, texture, global shape) to contribute
independently to the classification of an image. Two image
classifiers were trained – one that discriminated bear images
from non-bears, and one that discriminated butterflies from
non-butterflies – and were shown to successfully differentiate
the target categories from other, random object categories. The
distractor pictures were then rank-ordered, with respect to how
well they fit the target classifiers; the top- and bottom-third of
the pictures were then identified as high- and low-similarity
distractors, and used in a subsequent search experiment
(Experiment 3) analogous to the one that relied upon the hu-
man similarity ratings (Experiment 2). The critical difference
was that in Experiment 3, the similarity ratings were derived
from computational methods, rather than from people. Again,
search performance reflected the similarity makeup of the
distractors, with faster RTs among items that were less similar
to the target category, and more first fixations falling upon
items with higher similarity to the target category.

Although the two search experiments produced qualitative-
ly identical results, there were pictures for which the human
raters and computer model did not agree, leading the re-
searchers to ask whether the human and computer ratings were
based upon different determinants of similarity. For instance,
differences might arise via the possibility of semantic influ-
ences on ratings given by people, differential weighting of
features betweenmethods, or the possibility that some features
were appreciated by humans but were not included in the
computational model. It should be noted that the model typi-
cally agreed with human raters: Of the low- and high-
similarity classifications, there was roughly 38 % agreement,
and only rarely did the human and computer ratings strongly
conflict (i.e., less than 2 % of the pictures were rated as Blow-
similarity^ by one method and Bhigh-similarity^ by the other,
or vice versa). In their fourth (and final) experiment,
Alexander and Zelinsky (2011) constructed distractor arrays
with four objects. In the high-similarity target-absent trials,
one object was chosen that was rated as highly similar by
the human raters but not the model (human-only distractors),
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one rated as highly similar by the model but not the hu-
man raters (model-only), one on which the humans and
model agreed on a high similarity rating (human + mod-
el), and one on which both agreed on a medium-similarity
rating (medium); the converse was true for low-similarity
trials.

To examine which similaritymeasure best predicted human
behavior, the authors examined which items were more (or
less) likely to be fixated first; the logic being that the best
predictor of high similarity should acquire the largest number
of first fixations, and the best predictor of low similarity
should acquire the fewest. In high-similarity trials, when peo-
ple searched for butterflies, the human + model distractors
were first fixated most frequently, followed by the human-
only, and then the model-only and medium distractors (which
were not statistically different from one another). When
searching for teddy bears, all three high-similarity classes
were fixated first more frequently than the medium distractors,
but were not statistically different from one another. Turning
to the low-similarity trials, when searching for butterflies, hu-
man + model distractors were fixated first the least frequently,
followed by the human-only distractors, and then the model-
only and medium distractors (which again were not statistical-
ly different from one another). Nearly identical results were
obtained for the teddy bear search group, but there, the human
+ model distractors did not outperform the human-only pic-
tures. Taken together, the results suggest that the best predictor
of human behavior came from using distractors whose ratings
were agreed upon by human raters and a computational mod-
el, and when the human and computational ratings were
misaligned, the human ratings always performed as well as
or better than the model.

The Alexander and Zelinsky (2011) study illustrates that
similarity as rated by people may at times be a better predictor
of human search behavior than a purely computational ap-
proach, but also, crucially, that the best predictions sometimes
come from situations in which human and computational rat-
ings agree. This is a strong argument in favor of combining
computer vision techniques with human ratings (e.g., MDS).
Although in the Alexander and Zelinsky (2011) study, a pure-
ly computational approach was unable to outperform human
ratings, there is no reason to suspect that computational
methods are universally lesser than human ratings, nor that
human ratings will consistently outperform computer vision
in the years to come. A full review of the computer vision
literature is certainly beyond the scope of the current article,
but it should be noted that considerable strides have been
made in recent years to describe, classify, and categorize im-
ages, using computational techniques (de Campos, Csurka, &
Perronnin, 2012; Krizhevsky, Sutskever, & Hinton, 2012;
Yun, et al., 2013; Ristin, Gall, Guillaumin, & Van Gool,
2015; Zhou et al., 2015), and that these methods have proven
useful in predicting human behavior.

For instance, Zelinsky, Peng, & Samaras (2013) showed
that human participants could identify the target category that
another searcher was looking for by examining what
distractors that person examined, and that a machine vision
decoder – specifically, a Support Vector Machine (SVM) clas-
sifier—performed on par with the human decoders. A recent
study byMaxfield, Stalder, and Zelinsky (2014) found that the
typicality of an image (i.e., how representative of a category
an item is, as indicated by human participants) predicted
search guidance and target verification; relative to images
rated as being less typical, higher typicality items were
fixated more quickly and were responded to faster once gaze
fell upon them. Importantly, Maxfield and colleagues (2014)
also trained an SVM classifier on the target categories and
found that the computational confidence ratings—indexed
via distance from the object classification boundary—mir-
rored the behaviorally obtained typicality ratings. Clearly,
computational methods are already capable of predicting be-
haviorally meaningful results, and it seems that their capacity
to do so will only grow over time (Zelinsky, Peng, Berg, &
Samaras, 2013).

Although human and computational methods are not mu-
tually exclusive, there are several reasons that researchers may
choose to adopt a solely human-based approach to obtaining
similarity ratings. First, simplicity without the loss of fidelity:
Asking human raters to provide similarity estimates is a com-
paratively straightforward task when one considers the vast
range of machine vision techniques that one may choose to
employ. Computer vision methodology is evolving and be-
coming more sophisticated, which is exciting, but that makes
choosing the right technique (and implementing it) a poten-
tially daunting task. By comparison, researchers have been
asking human raters to provide simplistic, overt similarity rat-
ings (or indirect ones, via tasks like perceptual discrimination)
for decades, and literature abounds showing that people are
generally able to accurately convey their perceptions of simi-
larity. Indeed, spatial models of similarity (drawing upon hu-
man rating data) have been so useful that they have even given
rise to one of the few Blaws^ of psychology, Shepard’s (1987;
2004) Buniversal law of generalization,^ and have been incor-
porated into sophisticated, highly successful mathematical
models of cognition, such as Nosofsky’s Generalized
Context Model (Nosofsky, 1986). So the simplicity of
obtaining estimates from people, it can be argued, does not
necessarily come at the cost of imprecision.

A second reason one may choose to use human ratings is
that in some situations, it might be advantageous to adopt a
metric of similarity that is not purely based on physical char-
acteristics. In Godwin, Hout, and Menneer (2014), we aimed
to isolate visual from semantic similarity, and in Alexander
and Zelinsky (2011), a computer vision model was imple-
mented specifically to eliminate the influence of semantics.
However, return to Fig. 1 and consider the similarity of the
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couch, relative to the bowtie and the chair. A purely visual
approach to similarity may suggest that, due to the global
shape, color, and texture of the couch, it is more similar to
the bowtie than the chair. But if someone were asked to search
for Ba couch,^ that person may well seek out features that are
related semantically (but not necessarily visually) to couches.
Attention may therefore be directed more quickly to things
that enable sitting; that is, objects that share categorical fea-
tures, like having four legs, and a flat base on which to rest.
Zelinsky et al. (2013a) recently advanced the TAM model
(Zelinsky, 2008) showing that a computational model can in
fact learn to discriminate a category (rather than an instance)
of targets from non-targets, which suggests that computer vi-
sion approaches may soon be able to tackle this task more
broadly. But simply by allowing human raters to consider all
aspects of similarity when providing their estimates (i.e., not
giving instructions that ask them to focus solely on visual
characteristics), we may obtain similarity ratings that tap into
these category-predictive features.

Third, data from human raters allows researchers to exam-
ine feature spaces without the necessity of explicating those
features a priori. Simply put, MDS can be used in a purely
exploratory fashion in order to arrive at hypotheses regarding
the features people used to conduct their ratings, and the rel-
ative salience of those features. By contrast, computational
models by their very nature require that object features be
identified and represented, and usually require explicit de-
scriptions of the manner in which similarity is determined or
defined, as well as the weighting of the features relative to one
another. Therefore computational approaches are sometimes
less amenable to exploration than they are to confirmation,
though they are certainly not exclusively used for confirmato-
ry purposes. Computer vision approaches are advancing rap-
idly, and many techniques are progressed using computational
experimentation, aimed at the exploration and identification of
stimulus features.

With MDS, once subjective hypotheses have been arrived
at, they can then be tested for confirmatory purposes using
linear regression (Kruskal & Wish, 1978; Green, Camone, &
Smith, 1989). For instance, suppose the MDS space of a col-
lection of dogs tends to place short-haired dogs on one side of
the space, and long-haired dogs on the other. An analyst could
test this hypothesis (i.e., Bdogs are differentiated based on the
length of their coat^) by asking a new group of participants to
view the dogs, one at a time, and indicate (e.g., using a Likert
scale), Bhow long is this dog’s coat?^ The ratings from this
secondary task could then be regressed on the individual dog’s
locations in the MDS space to determine the degree to which
this hypothesized feature (coat length) maps onto the similar-
ity ratings. High regression weights would indicate that a par-
ticular dimension reflects the hypothesized construct.
Regression weight (or effect size) comparisons could then be
used to examine the degree to which a particular construct is

represented on one of the MDS dimensions (after all, some-
times features may co-vary, as would be the case if coat length
correlated with the size of the dog or the color of its fur), or the
degree to which one construct is a better predictor of similar-
ity, relative to another (e.g., perhaps color is a better predictor
than is coat length). Because the order of the dimensions in an
MDS analysis reflects their relative importance (i.e., the de-
gree to which a particular dimension explains variance in the
raw similarity ratings), an added benefit of this technique is to
allow you to uncover not just what features have been appre-
ciated, but also which features are most salient to human raters
(e.g., perhaps coat length and color are both important, but
color explains more variance, therefore suggesting it is a more
salient feature than is coat length).

It may come to pass that the quality of data from human
ratings is someday surpassed by those from computational
methods. If and when this occurs, it certainly would be more
advantageous to adopt a computer vision approach, in order to
eliminate the necessity of additional data collection that may
require time, effort and money, as well as to deal with the
concern that human raters are prone to individual differences,
lapses of attention, and so on. Currently, however, it seems
that the most advisable approach would be to adopt a syner-
gistic approach that combines human data with computational
methods.

General Discussion

Clearly, similarity plays an important role in vision, but it
should be appreciated that its utility is not limited to visual
cognition or, for that matter, cognition more broadly construed
(Hahn, 2014; Hout et al., 2013). The concept of Bsameness^ is
important to understanding attention and perception
(Nosofsky, 1986; Solan & Ruppin, 2001), as well as predic-
tions from memory theories (Gillund & Shiffrin, 1984;
Hintzman, 1986, 1988). Without being able to appreciate re-
semblance, we would be unable to successfully categorize
new items as belonging to learned categories (Goldstone,
1994a; Goldstone & Steyvers, 2001; Nosofsky & Palmeri,
1997); indeed, Shepard’s (Shepard, 1987, 2004) pivotal
Buniversal law of generalization^ hinges on the similarity be-
tween new stimuli and what has been experienced in the past.
Lexical access (and production) is helped along by being able
to recognize the similarity between an utterance and previous
experiences with like-sounding expressions (Goldinger, 1998;
Goldinger & Azuma, 2004). Additionally, in the classic other
race effect, it is thought that faces of members of an outgroup
are less easily perceived and remembered because they appear
more similar to one another than do members of one’s own
group (Goldinger, He, & Papesh, 2009; Papesh & Goldinger,
2010). Similarity judgments have been used to uncover the
visual features that relate to the perception of naturalness, and
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have been shown to correlate strongly with the low-level vi-
sual features of images (as determined by computer algo-
rithms; Berman et al., 2014). The concept of similarity even
makes contact with the neuroscientific literature, as overt hu-
man similarity ratings have been shown to map onto activity
in the human and non-human primate inferotermporal cortex
(Mur et al., 2013). Moving outside of cognition, similarity has
a part to play in computational approaches to pattern recogni-
tion and machine learning (Bishop, 2008), text retrieval
(Salton, 1991), and aspects of artificial intelligence
(Riesbeck & Schank, 1989), and MDS techniques have even
been used to examine the structure of bacterial colonies asso-
ciated with living organisms (McFrederick, Wcislo, Hout, &
Mueller, 2014), to name a few examples.

Given its widespread applicability, it is striking that MDS
has been applied to questions in vision science so infrequently.
One of the primary barriers to using MDS techniques has
historically been that collecting similarity data using tradition-
al pairwise rating methods is an extremely time-consuming
task (Hout, Goldinger, & Ferguson, 2013). The number of
pairwise comparisons needed for any given group of items
increases rapidly as the number of members in the set grows.
Specifically, for n items, n(n-1) / 2 comparisons are needed
(e.g., for a set of 5, that is 10 pairwise comparisons, but grow-
ing the set to a mere 30 items requires 435 comparisons).
Thus, to conduct the approach outlined in this article with
any more than around 30 items would require lengthy exper-
imental protocols that may be fraught with problems, such as
participant fatigue or disinterest, and evolving strategies dur-
ing the ratings task. Clearly, if the similarity rating phase of
our approach takes many times longer than the search phase
itself, then this technique could become impractical and
intractable.

Resources for conducting this approach

Fortunately, there are alternatives to the standard pairwise
method of similarity data collection. In particular, spatial pro-
cedures for collecting ratings, such as the spatial arrangement
method (SpAM; Hout et al., 2013) or inverse MDS
(Kriegeskorte & Marieke, 2012) offer intuitive interfaces by
which participants can depict their perceptions of the similar-
ity between many items at once. SpAM and inverse MDS are
different in some respects—for instance, inverse MDS re-
quires repeatedly rating some items—but both involve the
presentation of all (or many) of the objects in a set simulta-
neously. Instructions ask participants to move the items
around in space (using the computer mouse), placing them
at distances from one another that respect the perceived sim-
ilarity of each pair. In essence, it is as if the rater is projecting
her mental representation of the set onto a two-dimensional
plane.

The most germane benefit of these approaches to collecting
similarity ratings is that a single trial provides data on many
item pairs simultaneously; ratings are simply the Euclidean
distances between each pair of items on the screen, measured
in pixels. Thus, data collection is greatly speeded, without
suffering in quality (Hout et al., 2013). Whereas a 30-item
set may take 25-30 minutes to rate using standard pairwise
methods, a single trial of SpAM is sufficient to handle the
task, often being completed in as little as 3-5 minutes. When
object set sizes increase beyond 30 items, conducting a single-
trial version of SpAM is unmanageable, due to the fact that the
objects would have to be displayed in minute scale to be able
to fit on the screen all at once. However, recent multi-trial
versions of SpAM have proven useful in collecting similarity
ratings for large sets of items across several trials. For exam-
ple, in Berman et al., (2014), we collected similarity ratings for
sets of 70 real-world scenes using controlled randomization
procedures across only 29 SpAM trials.

It also should be noted that many resources are available
that exist to aid researchers in the collection of such similarity
data. Kriegeskorte and Marieke outline in detail their adaptive
algorithm for inverse MDS (Kriegeskorte & Marieke, 2012),
and on the first author’s website (www.michaelhout.com)
there are many freely available programs (written in E-
Prime) for the collection of similarity data in a variety of
techniques (including pairwise methods and SpAM), as well
as Excel workbooks to aid in data organization and concate-
nation. Moreover, large-scale databases have recently been
constructed that have used MDS to provide quantified simi-
larity for sets of real-world object pictures (Hout et al., 2014;
Horst & Hout, in press; Migo, Montaldi, & Mayes, 2013).
Compared with simplistic stimuli, such databases allow re-
searchers to explore broader issues under increased ecological
validity while still maintaining control over visual similarity.
With respect to the current manuscript, these databases even
eliminate the necessity of conducting the first two steps of our
approach.

Future directions

In the visual search literature, there has been an extensive
debate regarding the degree to which salience influences at-
tentional control, particularly in terms of when and whether
objects are fixated or inspected by searchers (Tatler, Hayhoe,
Land, & Ballard, 2011). Although the role of bottom-up sa-
lience was initially rather popular, it has since been found that
salience can be over-ridden by top-down information such as
goals or target templates (Chen & Zelinsky, 2006; Kunar,
Flusberg, & Wolfe, 2008). However, since that time, salience
often has been used as a way of invoking careful controls of
the visual characteristics of a given set of stimuli. One impor-
tant difference between saliency approaches and the methods
described in this article, it should be noted, are the
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relationships that the two approaches try to quantify.
Saliency models typically quantify how different a current
location in a display is, relative to rest of that display. The
logic is that points in space that are highly dissimilar from
their surroundings are more salient; that is, they are more
likely to attract attention. These models have been applied
to real-world search and have been shown to successfully
predict, for instance, the likelihood that a given location
will be fixated by an observer (Itti, 2005; Itti & Koch,
2001).

By contrast, the approach laid out in this article quantifies
the similarity relationships between sets of objects, and these
objects need not be present in the same visual environment.
That is, this approach is not limited to studying bottom-up
influences on attention. Indeed, our technique could be used
to study bottom-up saliency, for instance, by controlling how
similar a set of distractors are to one another (thereby making
distractor arrays that are more or less homogeneous; cf.
Duncan & Humphreys, 1989; Avraham, Yeshurun, &
Lindenbaum, 2008). Alternatively, it could be used to study
top-down attention, as in the Hout & Goldinger (2015) study
wherein we manipulated the visual similarity between the tar-
get image a searcher experienced and their mental representa-
tion of that item derived from a somewhat different looking
cue (Zelinsky, 2008, for a computational approach to studying
mental representations). Thus, one potential future avenue for
the use of ourMDS approach would be to use similarity-based
metrics to serve as an additional, complementary tool for con-
trolling experimental stimuli in a wide range of visual-
cognitive tasks (Borji & Itti, 2013, and Borji, Sihite, & Itti,
2013 for more discussion of saliency modeling).

In reading (Rayner, 1998, 2009), examining eye move-
ments has provided detailed insights into the moment-to-
moment processing that takes place as words are read and
integrated to form a coherent understanding of the sentence
content (Liversedge & Findlay, 2000). Currently in reading
research, the measure of visual similarity is quite coarse. A
common measure of visual similarity is quantified by exam-
ining the size of a word’s orthographic neighbourhood. An
orthographic neighbor is defined typically as a word that dif-
fers from a target word by a single letter, such as house and
mouse (Coltheart, Davelaar, Jonasson & Besner, 1977). The
visual similarity of words during reading has shown to have an
impact on reading behavior. Perea and Pollatsek (1998), for
instance, found that when a target word had a high frequency
(i.e., a word that appears regularly in English text) neighbor,
the reader would sometimes mistakenly identify the target
word as its higher-frequency neighbor and this would cause
re-reading of the text to correct the mistake and make sense of
the context. This finding suggests that similar words can be
misidentified as visually similar words. One potential future
use of our approach for reading (and word identification) stud-
ies therefore would be to control the visual similarity among

word stimuli, by using the MDS ratings of individual letters.
This method could provide a novel addition to existing word
similarity measures and be useful for research in reading. By
incorporating an MDS-based measure of similarity among
letters, similarity between words can be more fine-grained
than such a coarse measure currently allows.

Conclusions

The concept of similarity is a pivotal aspect of many psycho-
logical studies, particularly those pertaining to visual search
(Duncan & Humphreys, 1989; Treisman & Gelade, 1980).
MDS is a simple and robust way of quantifying similarity
scores between stimuli on any dimension(s). Data collection
methods with regard to MDS are easy to implement (Hout,
Goldinger & Ferguson, 2013), and the analysis tools for MDS
are already included in many popular statistical programs
(e.g., SPSS, R, or the statistics toolbox for Matlab).
Although combiningMDS with standard behavioral measure-
ments (e.g., RTs) is useful, we feel that the inclusion of eye-
tracking is a particularly fruitful avenue for future research.
Eye-tracking analyses have the ability to uncover more nu-
anced effects of similarity in visual search (Hout, Goldinger
& Brady, 2014; Maxfield & Zelinsky, 2012; Stroud et al.,
2012). For instance, by deconstructing the search RT into
periods of scanning behavior (i.e., how efficiently are the eyes
guided to the target) and decision-making behavior (i.e., how
quickly targets identified following fixation, or how quickly
distractors are rejected), researchers can better elucidate the
manner in which similarity relationships affect one’s ability
to perform a search. Moreover, computational approaches to
similarity also hold a great deal of promise; by combining
human ratings with those derived from computer vision, re-
searchers have the potential to greatly inform theories of visu-
al search. Computational approaches may even someday
prove to be better predictors of human behavior, and thereby
supplant the need for human ratings. For now, more generally,
we hope that the use of MDS in psychological studies will
soon be commonplace, ensuring the ease and accuracy of
quantifying similarity to better examine theories in visual
search and beyond.

Finally, throughout the present review, we have focused on
outlining how MDS ratings can be used to quantify the visual
similarity between objects. It also is possible to useMDS to go
beyond the visual modality and compute the similarity
between other forms of stimuli, objects, concepts, and
information. For example, in a recent study, Montez,
Thompson, and Kello (2015) asked participants to recall as
many animal names as possible within a given time period.
The purpose in doing so was to examine memory recall.
Participants arranged the animal names on a whiteboard and
were then asked to categorize groups of animal names. Again,
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although there was a visual component to this task, the core
usage of MDS was that it enabled the researchers to quantify
the semantic rather than visual similarity between items. This
demonstrates that MDS is not just beneficial in the visual
domain, but in other domains and modalities as well.
Indeed, it may be the case that MDS will ultimately prove to
be highly beneficial beyond the visual modality, enabling re-
searchers to capture, for example, both the visual and semantic
similarity between objects and items together.
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